[图论][欧拉路径][特判] codeforces 1038E Maximum Matching

http://codeforces.com/contest/1038/problem/E

“这题有点难受”系列。之所以能这么O(n)做完全是有且仅有4个点,玄学。

其实也不是很难受,主要是最后一组测试(test 117)让我意识到原来的处理方法对于那种特殊情况都不适用,然后感觉在这时候只能用n²算法才能解决。。。想了很久反正是,最后终于发现当(奇点数==4&&删去最小边会使得4个点不联通)这种情况只有两种,一种是三个点连成环然后剩下一个挂在外面,另一种是1到2和3到4有1条边,而2到3有两条,所以只要把这两种情况特殊判断一下就还是O(n)的算法了。。

正经地说:把1234看成4个点,n个block相当于边,题目意思就是找出一条最长的路使得每条路都只能走一次,无向图只能走一次,很显然的欧拉路径的操作。但是要分很多情况讨论。

首先分连通分量有几个的时候,当有2,3,4个的时候就是找到这几个连通分量中的最大值,因为这时候每个联通分量都一定是有欧拉路径的,3的时候可能比较难证明,但是可以通过4个点组成的图奇点只有024三种可能推出来。

然后当只有一个连通分量也就是四个点都联通的时候,讨论奇点数量,前面已经说过奇点数量只可能是024,当是02的时候直接全选因为一定有欧拉路径,当是4的时候再分类讨论:找权值最小的那条边,看他是不是去掉后会使得多出来一个连通分量,说是多出来一个联通分量其实只有可能是多出来一个孤立的点,因为其他情况都与(4个点都是奇点)这个条件相矛盾,所以删除这条边如果能使得原图不连通那么一定是分成了一个3个点一个1个点,这里面又有两种具体的情况,也就是之前说的,一种只有一个桥另一种有两个桥,如果不是这两种情况那么直接取全部的边然后删除掉最小权值边,如果是这两种情况则单独特判即可。。需要注意的是这两种情况需要循环一遍所有的边来确定最大值,因为删除的可能是其他的边也可能是桥。

继续阅读“[图论][欧拉路径][特判] codeforces 1038E Maximum Matching”

[SAM][多串][不同子串十进制求和][拓扑排序] hihocoder #1457 : 后缀自动机四·重复旋律7

https://hihocoder.com/problemset/problem/1457

要求求出来n个串中所有子串的十进制和。

考虑单个串的情况:顺着sam的边走的话,一个点的所有字串等于它所有的父节点的字串+c,c为从父节点转移来的路径字符,由十进制的性质可以知道当前节点(设为st)的和为则求出sam状态转移图的拓扑序然后刷sum即可;

多个串的情况:考虑把多个串合并为1个串,每两个串之间以‘9’+1填充(也就是: ),然后建立sam。此时要求出sam每个状态中有多少个不含:字符的子串,这里用到了一个性质就是,这个值恰好就是从初始状态S到状态st的所有”不经过冒号转移的边”的路径数目,而有向无环图上的路径数目也是一个经典的拓扑排序问题

由此只需求拓扑序的过程中把有效子串个数求出来就行了。

wa点的话,注意第一次调用sam前要用init函数初始化。另外,拓扑排序无需纠结数据结构条件是指向父节点还是从父节点指向子节点。

继续阅读“[SAM][多串][不同子串十进制求和][拓扑排序] hihocoder #1457 : 后缀自动机四·重复旋律7”

[二维平面离散点的DP][离散化] 2018camp day1 Growth

http://newoj.acmclub.cn/problems/2057

看的时候没有什么思路,想过dp但是感觉数据量不可行,看了题解才意识到离散化即可O(n^2),暴力刷表推出来每个点的最优值即可。

此外,还学习到了v[i][j]=v[i][j-1]+v[i-1][j]-v[i-1][j-1]+mp[make_pair(x[i],y[j])];这种处理方法,如果没有想到-v[i-1][j-1]的话,就不会想到推出来vij也就没有后面的操作了。此外,在二维平面上这种只有两个轴向转移的思想也是很重要。确定了dp的一个转移的方向。最后,确定答案的一步也很有趣,由于离散化导致的不能确定m天的位置,所以只能再遍历所有的点然后取小于等于m天的那些点向m天转移的最大值。

wa点的话离散化忘记去重。。。。很尴尬的操作

继续阅读“[二维平面离散点的DP][离散化] 2018camp day1 Growth”