[线段树][字符串hash][假算法] bzoj2124 等差子序列

这个题在codeforces上有几乎一模一样的:http://codeforces.com/contest/452/problem/F

cf上的题说的是考虑长度为3的等差序列,bzoj这个说的是等差序列其实也是找长度为3的,因为显然能找到长度大于3的肯定也能找到等于3的。cf那个题有个假算法可以过掉所有数据,就是暴力枚举中点,然后往左右延伸的时候不超过5个就行。。之所以能这么做是因为这个题目要想构造出来NO的数据确实很难。。不过假算法依然是假算法。。

正解是每次出现过一个点之后把他在线段树上值变为1,然后求一个中点左右两边有没有相同的时候需要判断左右两边是不是完全一样,如果不是一定有解。这里判断的方法是hash。。。分别在两个线段树上维护正反两个方向的左右01字符串的hash值就可以了。
wa点:首先是对于这种多项式形式的线段树合并的时候要分三种情况,完全在左/完全在右/跨越中点;其次是跨越中间点的情况下一定要考虑清楚应该累加的数值是多少。。在这里是pw[mid-max(ql,l)];最后是当ai==1和ai==n时候的特判,这时候不能query,但是必须update,我一开始写了单独处理1,然后i从2开始循环,后来忽然意识到a1并不一定等于1啊。。。傻了。。。

继续阅读“[线段树][字符串hash][假算法] bzoj2124 等差子序列”

[换轴][并查集][异或性质][连通分量] codeforces 1040E Network Safety

http://codeforces.com/contest/1040/problem/E

这个做法最重要的是原本的每一条边两端点一定不相等,所以两个点如果同时被异或结果一定仍然不相等。     然后就是考虑一个点被异或另一个点没有被异或的情况,一开始觉得会很复杂?但是实际上不是这样的,远没有想象中的复杂:  当x确定的时候,只有a⊕b==x的那些边会受到影响,这些边必须同时被选中,而剩下的,无所谓。。所以就把这些边连起来的点缩点之后就成了2^q的选择方式了。。

实现细节:①会卡并查集退化,所以必须写按秩合并   ②每次只要记录下被改动的点,然后下一次把这些点并查集复原即可,否则由于并查集的初始化时间复杂度会退化。

继续阅读“[换轴][并查集][异或性质][连通分量] codeforces 1040E Network Safety”

[比赛][TreeDP][树的性质][换轴][统计技巧] codeforces 1060E Sergey and Subway

自己思路的问题:每次用一个中转节点多连一条线就是等于跳过了一个节点,想到了偶数就是/2,奇数是+1/2,但是没有想到怎么去统计实现。

这个问题最后的答案可以表示为(S+O)/2,其中S是所有点对之间的路径长度之和,O是路径长度为奇数的路径的数量。然后就是如何计算这两个数字的问题。

我以前的理解是求S得用两遍dfs的treeDP,然而这次学到了新操作就是可以分别考察每一条边他被多少对点之间的路径包含了,只需要求出有根树每个点对应的子树中的节点个数即可,S+=(n-subts[x])*subs[x]。

求O的方法就更妙了,画出来一颗有根树就可以发现,两个节点之间的距离奇偶性可以用他们到根节点的奇偶性来表示!(因为树形结构本身对于根节点来说有某种意义上的差分性质emmm),假如两个点到root的路径长度(也就是depth)奇偶性相同,那么他们之间的路径就是偶数的否则是奇的。所以只需要求出来所有的奇数层的节点个数乘以所有的偶数层的节点个数就可以得到O了。

继续阅读“[比赛][TreeDP][树的性质][换轴][统计技巧] codeforces 1060E Sergey and Subway”

[比赛][贪心][STL] codeforces1060D Social Circles

比赛结束智商上线系列

昨天的时候看C没整明白然后来看D,没想出来构造方法又回去卡C结果最后都没出呵呵呵,今早起来写了几个样例,组合了下就发现了规律:每次找到left最大的那个人和right最大的那个人,如果不是同一个人就合并中间left和right重合部分,ans加上这一部分(ans+=max(maxleft,maxright))然后把这俩人重合的部分消去合并成一个新人放回集合里;如果是同一个人那就自己一个人一个圈子就好了。

感性理解的话就是要尽可能的让长的段之间有重复,重复就可以节省椅子,而始终都找最长的left和right就能保证这一要求。

wa点:multiset中如果两个元素它们定义<运算符的那个信息相同他就认为是相同的,而erase的时候会把所有相同的都erase掉,所以为了区别不同的人加上了一个id。。。很神奇吧。。

继续阅读“[比赛][贪心][STL] codeforces1060D Social Circles”