[DP][后效性处理] codeforces 1247 E Rock Is Push

题目链接

题意:

给定一个 $n*m$ 的棋盘,每次你只能向右走或者向下走,要求从左上角 $(1,1)$ 走到右下角 $(n,m)$ ,问有多少种走法。
有一个限制因素是棋盘的格子里可能有石头,然后走到一个地方就会把这里的石头按照来的方向推出去,如果有多个石头就会连带着一起推过去。
数据范围 $1\le n,m\le 2000$ ,答案对 $10^9+7$ 取模。

题解:

直接DP会有后效性的问题,我们可以给状态加上约束:令 $D_{i,j} R_{i,j}$ 分别表示一个点改变原方向后向下走/向右走有多少种走法。
这样的话dp转移可以写成类似于 $D_{i,j}=\sum_{i=1}^{n-k-i}R_{i+t,j}$ 的形式,然后这样可以得到一个复杂度 $\mathcal{O}(n^3)$ 的算法,
观察这个式子发现他是线性的,当一个维度发生变化是等式右边只有一到两项会发生变化,就把复杂度降到了 $\mathcal{O}(n^2)$ ,就可以通过本题了。
继续阅读“[DP][后效性处理] codeforces 1247 E Rock Is Push”