codeforces 1325 E
题意:给定一个长度1e5的数组$a$, $1 \le a_i \le 10^6$ ,满足 $a_i$的因子数量不超过7. 求 $a$ 的最短的满足所有元素相乘结果为完全平方数的子序列的长度。
这个题目做的时候。。一直在想怎么dp。。。完全没往图的方向想。太久没做题了就是这样,丢掉了很多东西,sigh
继续阅读“[数论][图论][思维] codeforces 1325 E Ehab’s REAL Number Theory Problem”
题意:给定一个长度1e5的数组$a$, $1 \le a_i \le 10^6$ ,满足 $a_i$的因子数量不超过7. 求 $a$ 的最短的满足所有元素相乘结果为完全平方数的子序列的长度。
这个题目做的时候。。一直在想怎么dp。。。完全没往图的方向想。太久没做题了就是这样,丢掉了很多东西,sigh
继续阅读“[数论][图论][思维] codeforces 1325 E Ehab’s REAL Number Theory Problem”
KM最大权二分图匹配。然后权值的话,左侧原来的 m 个点代表送货员的家,与右侧表示红酒地点的 n 个点之间连边,权值为送货员的家 ni 与红酒处 mi 之间的距离与 mi 到 饭店之间距离的和,选中这条边的话表示这个人直接从家里到红酒处然后把酒送到了饭店。之后在左侧新建 n-1 个点表示走到店里又出来的送货员,其与右侧n个点的权值设为2倍红酒到饭店的距离,因为回到店里之后所有的送货员就没差别了,而且一个人可以被重复利用,没有什么先后的时间限制。n-1 是因为最多就只有 n-1 瓶红酒会被从店里又出来的人送到(至少有 1 个人是直接从家里到红酒处的)。这样直接跑KM就可以了,但是有个问题是原来的KM板子太慢了,到UOJ#80找了个新的板子,能1s跑2000个点的KM。。。
继续阅读“[KM][二分图带权匹配][优秀模板][比赛补题] codeforces gym 101635 G Cordon Bleu”
题意:有一排 $n$ 个灯,可以是红色或者蓝色,然后k个人投票,每个人投的票会写上他猜测的某三盏灯的颜色。然后现在问是否有一种红蓝灯的安排方式使得每个人投的票至少有2个猜测是对的。
$2-SAT$ 板子题,但是比赛时候忘记了(主要这东西在中国真的很少考emm)相当于求让每个人的条件都为真的一组二进制向量。那么现在的问题就是怎么把每个人的约束条件转化为 $2-SAT$ 的子句的形式。
首先用 $x_1$ $x_2$ $x_3$ 表示一个人的三个选择,那么代表这个人的子句用文字表达来说就是 $x_1 x_2 x_3$ 中有2个或者3个为真。用条件的知识可以推出来这个说法等价于 $(x_1\lor x_2 )\land(x_1\lor x_3)\land(x_2\lor x_3)$ ,这样就把每个人的条件写成 $2-SAT$ 的形式了,接下来按板子连通分量+拓扑排序求解就OK了。
题目特殊的地方在于运算是异或,不是像经典的带权并查集那样可以有一个恒定的子节点与父结点的递推关系。比如传统的求一个结点到根结点的距离的并查集可以这样写
int findfat(int x) { if(fat[x] == x) return x; int tmp=fat[x]; fat[x]=findfat(fat[x]); //在此处修改val比如: value[x]=value[tmp]+1; return fat[x]; }
这样写的正确性在于这个递推关系一定是正确的,即使在森林里改变任意一个点的数值,在他的后代执行findfat的时候也一定能更新所有的数值。但是异或是不太一样的,如果直接写 value[x]=value[x]^value[tmp],的话,仅仅是对x求两次查找根结点而不做任何其他操作就会使得数值出现错误,因为w[x]等于和自己又异或了一次,就会出现不正常的结果。
思考了一下,我直接把w数组定义为:w[i]表示 继续阅读“[数据结构][带权并查集][异或] UVALive 4487 Exclusive-OR”
http://codeforces.com/contest/1062/problem/E
这题两个难点,第一个是如何快速找到一堆不一定在一起的节点的公共LCA,第二个是如何确定这一堆节点中需要剔除哪一个。
可以先想一下,设原集合的lca为p1,可以取得最优答案的点为x,其他点为vi,那么x一定不在lca(所有的vi)这个点的子树上。这时候,任意一个vi和x的lca都是p1。这时假如维护一个S[l,r]表示[l,r]的公共LCA,根据上面说的性质,这个S序列一定存在一个断点,从这个点开始所有的S==p1,这样的话就可以利用二分查找找到这个断点,可以确定这个断点一定是候选答案之一。另外一个在二分的过程中其实是所有的lca都是基于最左边那个点积累过来的,所以除了分界点之外另外一个可能影响到答案的就是最左边这个点。到这里就算是找到了唯二可能影响答案的点,只需要对他们分别验证就可以了。从dalao的代码里学到了lca也可以作为线段树维护的变量。。。 继续阅读“[线段树+][LCA][dfs序][二分查找][×] codeforces 1062E”
利用并查集处理合并,并保存每个块对应的覆盖范围(在y轴上的)上下界;利用线段树(更新区间的范围从并查集维护的信息中得到)维护每个x.5的点对应的州数和城市数。区间修改单点查询,只要确定好x.5这些点在线段树中的对应的下标就可以了,我这里是x.5在线段树中下标为(x+1)。由于我写的是1-n的线段树写完了才发现题目说的0-n-1,只能把读进来的东西都++。具体的操作:对于road,先找两个点是否在一个块里,如果是了那就不用任何操作(画图可以看出来如果这俩是一个块里的那么他们覆盖范围之间一定已经有线了),否则先把这两个的分别的块对应的区域在线段树中减去他的影响,再将两个块合并之后,再在线段树中加上这一新块的影响。先减后加,这样就可以避免繁杂的分类讨论了。。。
第一版正经的线段树ac之后想了想感觉在这个情境下只需要保证叶子节点的信息有效就行了,推了一下感觉可以去掉maintain的操作。。。试了下果然可以,而且快了很多,在vjudge上已经是用线段树的跑的最快的了(前几名都是用的BIT emmm
wa的点:本来一气呵成写完很舒服但是没想到出了很多bug,因为一些愚蠢的bug调试了很久。。。。数据结构这块还是太弱了。
继续阅读“[线段树+][并查集][区间信息维护] UVALive 4730 Kingdom”
这个题自己当时主要还是思维限制,只想着怎么能有类似于dfs序线段树那种操作,或者是就某个点对他的子树做一个什么类似于线段树的打标记处理。。但是感觉太复杂了,没搞出来,而且也没有把可以离线这个点利用起来,还是too young
正解是在dfs过程中维护一个线段树,这棵树的下标是代表了当前dfs到的深度(而非节点),看到这儿就感觉是个很妙的操作,这样的话只需要每次进入到一个节点的时候把对应的属于该节点的所有的操作(这个需要离线处理,把对应的操作存用个vector存起来就可以了)都处理一遍,也就是把对应的所有的区间上的数值加上,dfs离开的时候把对应的区间上的数值减去,回滚一下,就可以保证在dfs过程中就把所有的操作处理完了。
这个题倒是不难,但是我当时对于题目的理解导致写出来很复杂,所以记一下踩的坑。其实就是最短路树的应用,我的想法是先删掉不在树上的边,然后对于树上的边先删除连叶子的边,以此类推。这样写倒是没有错也可以过。
但是!这个题题面里说的是最多k个,所以其实根本不用考虑去掉非树边什么的,假如k>n-1的话只输出n-1条树边也是对的!这就省了好多代码了。其次,根本不用使用拓扑排序那样的处理过程(就是先去掉叶子这种),因为想一下dijkstra的过程就可以发现,每次从优先队列中取出来一个节点后,这个节点的前驱最短路其实已经确定了,只要在这时候把其前驱记录下来,根据dijkstra的每一步往外扩展一步的操作,按照这个顺序搞下去最后的记录表中的顺序其实就是拓扑序。。。。依次输出即可。 继续阅读“[CF][图论][最短路树] codeforces 1076D Edge Deletion”
题目链接 https://cn.vjudge.net/problem/UVALive-4080
最短路基础题,有意思的部分在于最短路树这个东西的应用,还有对复杂度的正确估算(莽
看题目意思,基本上能确定枚举那条要去除的边然后算每种情况的c,但是如果直接这样的话复杂度会是n*m²*logn,就题目数据量而言基本上不可能过的。所以就要找其他方法来降低复杂度,考虑到,去掉一条边也许不会对以某些点为原点的到每个点的单源最短路产生影响(也就是不在这些点的最短路树上的边),可以试着预处理出来初始状态下每个边的影响到的点的集合,在枚举到这条边的时候只需要重新计算这些点的最短路而不用每次都计算所有点的最短路,这样的话可以把复杂度降低到n²mlogn。不得不吐槽一下这个解法,说实话感觉并没有降低多少就卡过了时限,数据刻意友好么。。。。比赛的话就算能想到这个也不一定敢写吧emmm
坑点是有重边,果然做图论最重要的是搞清楚图的类型。。。重边啊自环啊什么的真的烦,还有一开始小根堆写成大根堆了,又是wa又是t的 继续阅读“[蓝书][图论][最短路][坑] UVALive 4080 Walfare And Logistics”
题意:求出给定图的生成子图里有多少个是仙人掌。
首先明确生成子图的概念:包括所有的顶点的子图(之前没有弄明白这个一直没有想出来),那么这个操作其实就很简单了,首先判断图形是否为仙人掌,如果是的话把其中所有的圈(其实在这里就是点双联通分量)所包含的边的数量算出来,Π(cnt[i]+1)即为结果(每个圈最多只能去掉一个边)。
首先,判断是否为仙人掌,这个可以利用无向图仙人掌的性质在dfs求双联通分量的时候顺便求出来:对于任意一个dfs树上的节点u,他的反向边数量+他的子节点中low值小于pre[u]的数量<2,如果大于等于2说明这个节点附近已经产生了两个环了,不可能是仙人掌,反之如果所有点都满足这个要求,那么一定是仙人掌。
其次,求每一个圈的边数。这里如果是仙人掌的话,一定每个点双联通分量都是一个圈(否则就会被判定为非仙人掌,所以这里首先保证第一步的正确性是很重要的),这样的话只需要在求点双联通分量时在退栈的时候把每个bcc对应的边的数量记录下来就可以了(注意是边的数量而不是点的)。
最后套一个无聊的高精度板子就ok了,因为格式错误wa了几次。。。UVALive貌似经常有把格式错误当成wa的。。。顺便这个对高精度的要求还挺高,1000位都满足不了开了100000位才过,至于吗呵呵