这个题wa到最后才意识到是dfs刷表的思想本身是错误的,必须按照拓扑序来处理,这两个是不等价的。不等价的原因是dfs可能会多次刷到同一节点而且这个节点的父节点还没有完全确定下来。比如当某个节点只有一个父节点的时候,本来dfs给了他1,也就是必胜态,但是如果某一次之后的刷新把父节点变成了1,那么由于该节点只有一个父节点所以他只能变成0。而原来写的dfs不能解决的就是这样一个问题:对于一个节点来说,是不是所有的父节点都是1或者至少有一个0,因为单纯的dfs可能会求很多遍这个点(如果不这样又没办法更新),如果用拓扑序的话就可以保证在搜到一个点的时候这个点的父节点已经全部搞定了,这也跟拓扑序处理的时候每次只走“一步”有关系。这样的话就可以保证不会有多余的1没有变成0了。
[SAM][多串][不同子串十进制求和][拓扑排序] hihocoder #1457 : 后缀自动机四·重复旋律7
https://hihocoder.com/problemset/problem/1457
要求求出来n个串中所有子串的十进制和。
考虑单个串的情况:顺着sam的边走的话,一个点的所有字串等于它所有的父节点的字串+c,c为从父节点转移来的路径字符,由十进制的性质可以知道当前节点(设为st)的和为则求出sam状态转移图的拓扑序然后刷sum即可;
多个串的情况:考虑把多个串合并为1个串,每两个串之间以‘9’+1填充(也就是: ),然后建立sam。此时要求出sam每个状态中有多少个不含:字符的子串,这里用到了一个性质就是,这个值恰好就是从初始状态S到状态st的所有”不经过冒号转移的边”的路径数目,而有向无环图上的路径数目也是一个经典的拓扑排序问题!
由此只需求拓扑序的过程中把有效子串个数求出来就行了。
wa点的话,注意第一次调用sam前要用init函数初始化。另外,拓扑排序无需纠结数据结构条件是指向父节点还是从父节点指向子节点。
继续阅读“[SAM][多串][不同子串十进制求和][拓扑排序] hihocoder #1457 : 后缀自动机四·重复旋律7”