[比赛补题][×] 2019 ICPC南昌邀请赛网络赛 K MORE XOR

2019 ICPC南昌邀请赛网络赛 K MORE XOR

题目链接

(⊙﹏⊙)不知道为什么比赛时候这个题和D题死推不出来,比赛完了5分钟ac,我大概脑子坏掉了。真的是超超超超级简单的一个题,但是我光顾着用数学公式推了所以推出来结果巨复杂(⊙﹏⊙)服了自己了。

题解:先说怎么求g(l,r): 首先f(l,r)很好求,利用异或的性质,预处理出来前缀异或和就可以了。设预处理出来p1[x]表示从a[1]到a[x]的异或和,那么很容易得到\[f(l,r)=p1[l-1]\oplus p2[r] \], 那么可以由g的定义就可以知道 \[ g(l,r)=\sum_{i=l}^{i=r} \sum_{j=i}^{j=r} f(i,j) =\sum_{i=l}^{i=r} \sum_{j=i}^{j=r} p1[i-1]\oplus p1[j] \];当然这个东西还是很复杂的,我们想办法把他复杂度搞到O(1):考虑每个p1[x]出现的次数,列个表可以发现,在这个求和式中出现的所有下标,从l-1变化到r, 而每个下标出现的次数都是一样的,这个次数等于 r-l+1 ,那么就可以得出结论,如果r-l+1为偶数,则g(l,r)应为0,否则应为\[ \sum_{i=l-1}^{r} p1[i] \],注意到这个式子又可以用p1的前缀和来O(1)计算,所以又可以提前求出来p1的前缀和p2,这样的话g(l,r)就可以表示为

\[g(l,r)=
\begin{cases}
0& \text{(r-l+1) is odd}\\
p2[l-2]\oplus p2[r]& \text{else }
\end{cases}\]

有了g(l,r)再来考虑w(l,r),\[w(l,r)=\sum_{i=l}^{i=r} \sum_{j=i}^{j=r} g(i,j) \],就跟g的表达式很像,但是这里不能直接再套用g关于p1的公式,因为g里面有很多的0是跟p2无关的,换句话说这些0并不是由p2[l-2]^p2[r]求出来的,所以要分类讨论。分析方法跟g是类似的,列一个表观察每个p2出现的规律,可以发现,这个规律是4个一循环的结构,设\[t=(r-l+1)\mod 4\]; 则当t==0时,所有的p2下标出现次数均为偶数次,也就是结果一定为0,t==2时,所有的p2下标出现次数均为奇数,这样的话即等于\[\sum_{i=l-1}^{r} p2[i] \],这个式子说明我们可以再用一个p2的前缀和p3来O(1)计算这个结果。这是比较简单的两种情况,另外两种是t==1和t==3,这两种一种是奇数项的出现次数为奇数偶数项为偶数,另一种是奇数项出现次数为偶数而偶数项出现次数为奇数,这意味着可以用一个分奇偶的前缀和来O(1)求得这个式子只不过仍需要分类讨论一次。。若令p31[i]和p32[i]分别表示p2的奇偶前缀和,t=(r-l+1)%4, 则w(l,r)的表达式为

\[
w(l,r)=
\begin{cases}
0& \text{t=0}\\
p31[r]\oplus p31[l-3]& \text{t=1 and r is odd}\\
p32[r]\oplus p32[l-3]& \text{t=1 and r is even}\\
p3[l-3]\oplus p3[r]& \text{t=2}\\
p32[r-1]\oplus p32[l-2]& \text{t=3 and r is odd}\\
p31[r]\oplus p31[l-3]& \text{t=3 and r is even}
\end{cases}
\]

这样的话整个问题就可以O(1)解决了。。不知道我当时脑子怎么回事就没推出来
继续阅读“[比赛补题][×] 2019 ICPC南昌邀请赛网络赛 K MORE XOR”

[CF][补题][递推计数][DP] codeforces 1043F Make It One

其实我用了一种操蛋的贪心试了一下,所有的cf测试数据里只有一组会错。。但是还没有搞明白为什么错了,也没有办法再继续证明正确性,所以还是放弃了去看tutorial,发现果然没思路就是dp。。。

然后这又不是一个正常的dp,甚至可以说不算是dp吧。。要从一堆数字里选出来一个集合使得gcd为1。确实,涉及到集合就很难操作。但是可以发现,如果这个集合存在,他的size是很小的,这里可以作为一个突破点去想。如果考虑枚举集合的大小,是否能有简单的计算方法。现在需要求的东西可以转化为,是否存在至少一个集合使得他的size为i然后gcd为1,当然这个也不好直接算,但如果再加一维,再枚举gcd,看看会不会有进展:这时候要求的转化为,是否存在至少一个集合,size为i,gcd为j。可以设一个dp[i][j]表示这种集合的数量,然后尝试是否可以递推。这时候可以发现这i个数字一定是从j的倍数里选出来的,所有的选法有C(cntj,i)种,其中cntj是原数列中j的倍数的数量。而这些里面又有一些不符合要求的,是因为他们的gcd=k*j,然后可以发现这些不符合要求的数量就是dp[i][k*j],这就实现了从大问题往小问题推的转移了。。。然后就只剩下边界的问题了,这个边界也很有意思:因为只考虑k*j<=max(ai)的gcd,所以大于的就是0就可以了

继续阅读“[CF][补题][递推计数][DP] codeforces 1043F Make It One”

[DP][转化目标] UVa 1289 Stacking Plates

附上一个讲的很好的链接https://blog.csdn.net/hao_zong_yin/article/details/79807322

第一感觉是类似矩阵连乘的那种操作,写完了才意识到复杂度会是2500^3,然后果断tle了(Final的题怎么会这么简单)。然后就没有什么太好的思路了。看了题解才有点明白。

这个题第一个难点在于,他又有分割又有合并,同时考虑这两种操作的话会很难设计状态转移,但是其实可以发现这两种操作的数量是有联系的,因为最初的堆数量是确定的,最后的堆数为1,所以分割和合并的数量关系可以确定出来,这样的话只需要算出来其中一种操作的数量就可以了,我这里考虑的是合并的次数w,经过推导可以得出最后答案ans与w的关系是 ans=2*w+n-1;(这个东西其实可以很简单的算出来:直接把每一摞盘子全到一起,总共的join次数为n-1,split次数为0;然后,每次在某一摞盘子内部进行一次split操作,则必然会在最后的结果中引入一次join操作,有一一对应的关系,因此可以推出来对于任意情况都有join次数==split次数+n-1)

第二个难点就是确定了要求合并的次数之后,如何进行dp。这里我们可以借鉴汉诺塔的思想,在考虑前i个(从小到大)盘子的时候,可以把大于i的盘子当成没有一样。而由于这里我关心的只是合并次数,所以不用考虑盘子的中间态(汉诺塔里盘子只能放在某个轴上,但是这里也可以放在地上),这样的话递推方程就会变得简单了。。。只需要使得dp[i][j]表示前i个盘子全放在第j堆上(想象一下这个画面)的最小操作数(这里要求第j堆必须有i这种盘子,说”这种”是因为离散化了),则转移的时候dp[i][j]一定是从dp[i-1][k]得来,其中1<=k<=n,而这时候又有不同的情况需要讨论 :①j==k,这时候如果有i的堆的数量为1,那么就是第j堆这个(因为我们规定只有j堆有i的时候才往这里转移),那么他就不需要动,直接dp[i][j]=dp[i-1][j];如果有i的堆的数量大于1,那就得先把j堆上的 (1到i-1) 这一坨移走,再把其他cnt[i]-1个i类盘子合并到j堆上,再把移走的 (1到i-1) 那一坨移回来(cnt[i]代表有多少堆含有i这个种类,可以预处理出来),所以总共增加的的操作数是cnt[i]-1+1=cnt[i],也就是这里的方程为dp[i][j]=min(dp[i-1][k]+cnt[i]);     ②  j!=k  ,这时候好说,只需要考虑第k堆有没有i就可以了,如果有那就多了cnt[i]-1次操作,如果没有就多了cnt[i]-1+1次操作(注意约定是j堆一定有一个才能往那儿转移,所以除了那一堆里的那个i,还剩下cnt[i]-1个i)。

其他的也就是离散化的操作需要谨慎一点,我由于写错这个wa了两发。。。去重的时候先保留能保留的再去重!不然有可能导致数组扫描完了却没有存任何一个数(比如整个数组都是同一个数)

 

更:今天起床看了看2个月之前做的这个题,觉得当时还是naive,每次直接考虑只向含有第i种盘子的摞转移就好了,于是重写了第二种代码(其实核心思想完全一样的)

继续阅读“[DP][转化目标] UVa 1289 Stacking Plates”