[CF][尺取][减少重复计算] codeforces 1043D Mysterious Crime

emmm第一感觉好像后缀数组之类的结构,但是这个每个元素是个整数,而字符串处理中每个元素都是一个长度为1的字符,,,所以很难把他等同于字符串来处理。但是直接理解的话,要求的话一定是找到一个排列,然后考虑他的每个子段,然后再在其他所有的排列中去找有没有这个子段,直接裸暴力的话n^3*10,肯定不行,但是想一下如果仅仅是考虑所有的子段就一定是不小于n^2的了,所以起码要在这里进行优化。然后由字符串的性质就可以知道一个长度为i的串如果满足要求的话,那么他的所有子串也都是满足要求的这些子串可以不用再计算了,发现了这个之后怎么去实施这个想法?考虑以每个下标i为开始的最长子串,这里如果用暴力的方法每次从i开始递增, 然后在与其他串判断,则当然仍然是n^3的,但是可以发现与其他串判断这个过程其实有很多重复的判断,假如已经知道了i到i+k个存在的话,判断第i+k+1个时候只需要把这一个数字去和其他的串中对应的数字比较是否全部相等就可以了,这样的话把复杂度降到了n^2*10,但是仍然不够,再考虑之前说的,枚举字段中的重复假设已经知道以i开始的到i+k个数字满足要求,那么在算以i+1开始的子段的时候,可以直接从第i+1+k+1个数字开始,也就是说中间的那些都不用再考虑了,因为这些信息已经在算第i个的时候计算过了。所需要保存的只有每个序列中数字i出现的位置而已。

继续阅读“[CF][尺取][减少重复计算] codeforces 1043D Mysterious Crime”

[DP][转化目标] UVa 1289 Stacking Plates

附上一个讲的很好的链接https://blog.csdn.net/hao_zong_yin/article/details/79807322

第一感觉是类似矩阵连乘的那种操作,写完了才意识到复杂度会是2500^3,然后果断tle了(Final的题怎么会这么简单)。然后就没有什么太好的思路了。看了题解才有点明白。

这个题第一个难点在于,他又有分割又有合并,同时考虑这两种操作的话会很难设计状态转移,但是其实可以发现这两种操作的数量是有联系的,因为最初的堆数量是确定的,最后的堆数为1,所以分割和合并的数量关系可以确定出来,这样的话只需要算出来其中一种操作的数量就可以了,我这里考虑的是合并的次数w,经过推导可以得出最后答案ans与w的关系是 ans=2*w+n-1;(这个东西其实可以很简单的算出来:直接把每一摞盘子全到一起,总共的join次数为n-1,split次数为0;然后,每次在某一摞盘子内部进行一次split操作,则必然会在最后的结果中引入一次join操作,有一一对应的关系,因此可以推出来对于任意情况都有join次数==split次数+n-1)

第二个难点就是确定了要求合并的次数之后,如何进行dp。这里我们可以借鉴汉诺塔的思想,在考虑前i个(从小到大)盘子的时候,可以把大于i的盘子当成没有一样。而由于这里我关心的只是合并次数,所以不用考虑盘子的中间态(汉诺塔里盘子只能放在某个轴上,但是这里也可以放在地上),这样的话递推方程就会变得简单了。。。只需要使得dp[i][j]表示前i个盘子全放在第j堆上(想象一下这个画面)的最小操作数(这里要求第j堆必须有i这种盘子,说”这种”是因为离散化了),则转移的时候dp[i][j]一定是从dp[i-1][k]得来,其中1<=k<=n,而这时候又有不同的情况需要讨论 :①j==k,这时候如果有i的堆的数量为1,那么就是第j堆这个(因为我们规定只有j堆有i的时候才往这里转移),那么他就不需要动,直接dp[i][j]=dp[i-1][j];如果有i的堆的数量大于1,那就得先把j堆上的 (1到i-1) 这一坨移走,再把其他cnt[i]-1个i类盘子合并到j堆上,再把移走的 (1到i-1) 那一坨移回来(cnt[i]代表有多少堆含有i这个种类,可以预处理出来),所以总共增加的的操作数是cnt[i]-1+1=cnt[i],也就是这里的方程为dp[i][j]=min(dp[i-1][k]+cnt[i]);     ②  j!=k  ,这时候好说,只需要考虑第k堆有没有i就可以了,如果有那就多了cnt[i]-1次操作,如果没有就多了cnt[i]-1+1次操作(注意约定是j堆一定有一个才能往那儿转移,所以除了那一堆里的那个i,还剩下cnt[i]-1个i)。

其他的也就是离散化的操作需要谨慎一点,我由于写错这个wa了两发。。。去重的时候先保留能保留的再去重!不然有可能导致数组扫描完了却没有存任何一个数(比如整个数组都是同一个数)

 

更:今天起床看了看2个月之前做的这个题,觉得当时还是naive,每次直接考虑只向含有第i种盘子的摞转移就好了,于是重写了第二种代码(其实核心思想完全一样的)

继续阅读“[DP][转化目标] UVa 1289 Stacking Plates”

[补题][贪心][数据结构优化][数学] Gym 101775B Scapegoat

首先可以确定要分一个trouble,那一定是等分,这一点可以从公式化简得到。

所以难的问题是,给每一个trouble分几个人。当没有什么做法/头绪的时候,想一想贪心递推的操作(贪心是因为这个题数据量不应该是dp),大问题是否可以从小问题转化过来,每次多一个人的时候,这个人应该放到哪儿?可以试着遍历每一个trouble看看放在哪里会使得变小最多,但是这样是M^2的做法,但是这时候考虑“哪里小的最多”这个条件,以及,+1之后哪里变小的最多是完全取决于trouble的数值和他当前已经有的人的,所以可以用一个优先队列来存储“哪里变小的最多”这个信息!这样的话就是M^logM的算法了,可以通过本题。

自己当时为什么想挫了?主要是一开始想的把一个划分之后可以看成两个新的数,但是事实并非如此,新分出来的和原来的是不等价的,同一个trouble分出来的可以互相组合,但是不同德trouble之间不能组合,所以这种思路可以否定。所以其实每次都要考虑所有的trouble,取变小最多的那个,想到这里又觉得是M^2的算法,又没有继续,但是这时候思路已经是对的了,就可以考虑可以用什么优化,尤其是这种最值/顺序之类的问题,可以多考虑数据结构优化。

继续阅读“[补题][贪心][数据结构优化][数学] Gym 101775B Scapegoat”

[树上倍增][贪心][数据性质] codeforces 980E The Number Games

评论区大佬:嗯这个题贪心很明显啦然后nlogn方法也有很多种

http://codeforces.com/contest/980/problem/E

要使得去掉一些点之后剩下的仍然是一棵树,那么去掉的一定是叶子或者某条路上的缩点后相当于叶子的子图。。描述有点困难自行yy。。然后如何选择去掉的点?可以发现,如果i<j,那么去掉j一定不如去掉小于j的所有数,因为2^j=2^(j-1)+2^(j-2)+2^(j-3)+…..+2+1,所以贪心策略就是能不去掉大的就不去,所以要从n-1开始一个一个找(由于k<n所以节点n一定不会被去掉),怎么确定一个点是否能被保留下来,只要确定这个点到最近的保留下来的点的距离小到可以满足去掉k个的要求(想一下,如果这个点离最近的保留点太远了,远到了如果保留这个就没法保证能去掉k个点了,那就肯定不能留了),要保留这个点一定也要保留从这个点往上回溯所有的点,然后就会发现在以root为根的树上,这个01标志是连续的分布的,也就是说有一段1111然后一段000,这样的话就可以二分求分界点,而树上的二分就是lca里的倍增算法了,用倍增法查找就可以在logn时间内找到分界点,找到之后判断是否满足要求,如果满足则把分界点到当前点都标记上保留(话说这样logn不就退化了吗。。。)

wa点是距离的处理和树上倍增往前跳的时候把cur写成了i。。。

继续阅读“[树上倍增][贪心][数据性质] codeforces 980E The Number Games”

[二分][精度][思维] codeforces1064E Dwarves, Hats and Extrasensory Abilities

http://codeforces.com/contest/1064/problem/E

又是喜闻乐见的交互+二分,这个已经在cf的讨论区被吐槽两次了,每次出交互题都是二分。。。我一开始没有搞懂题意,以为是你随便给他出点它会自动调整让点可以分为两片区域,后来才意识到他是给定了点的颜色分布,就是第几个点你只要问就是安排好的,也就是说这个需要你掌握问的点的坐标。。。

但是在不知道下一个点是什么的时候如何发问呢,首先想简化的过程,如果问的点全在一条线上会发生什么:假设左边为白点右边为黑,那么那个分界线一定是先往一个方向走了几步,然后又得回头往另一个方向走,如此反复。那么如何保证每次“回头”都可以有足够的余地让继续走下去而不与之前定好的界限相交?想到了一个叫二分的东西。。在倍增法的实现里其实就可以发现,他每次都会减半所以每次都不会覆盖到原来的部分。

但是这个题目直接二分又是有问题的,因为最多可以有30个点,而[log2(1e9)]==29,也就是说有一种情况可能最后会有俩点重合,为了避免这种情况可以先ask一个(0,0),并且以此确定左半边的颜色,而不是像一开始说的一样自己定左右颜色。这样的话就剩下了29个点需要处理了,1e9的范围可以保证无论如何二分都可以达到没有任何两个点重合的结果。这样的话只需要在分界处的两个点之间画一条斜线就可以了。

因为这个29的坑wa了n发。。。

继续阅读“[二分][精度][思维] codeforces1064E Dwarves, Hats and Extrasensory Abilities”

[思维][meet in the middle] codeforces 1023 E

其实也不是正常意义上的meet in the middle了,只是这个处理的思想有点像。(似乎每次做交互题都会卡?

自己做的时候是理解错题目意思了,以为图上只要联通的点都能返回YES,但是其实是按照他的限制下走的时候能走到才能返回YES。这样的话需要考虑的问题就比较好处理了。。。。一开始理解的那种的话根本没法在4*n次询问的限制下做出来。

因为右下半矩阵的路线只能通过询问(1,1)到该点的可行性来获得,左上半矩阵的路线只能通过询问(n,n)到该点的可行性获得,要想获得完整的可行路线只能在交界重合的地方处理,也就是反对角线上的方块。为了使得两个方向的推法能够走到同样的对角线点上,可以采取极端策略,左边的就尽量往下走,右边的尽量往左走,这样两种操作到最后的结果都是相同的,会走到对角线上的极端点(最左下的可行点),这时候就保证了两条路能够接上。 继续阅读“[思维][meet in the middle] codeforces 1023 E”

[比赛][贪心][STL] codeforces1060D Social Circles

比赛结束智商上线系列

昨天的时候看C没整明白然后来看D,没想出来构造方法又回去卡C结果最后都没出呵呵呵,今早起来写了几个样例,组合了下就发现了规律:每次找到left最大的那个人和right最大的那个人,如果不是同一个人就合并中间left和right重合部分,ans加上这一部分(ans+=max(maxleft,maxright))然后把这俩人重合的部分消去合并成一个新人放回集合里;如果是同一个人那就自己一个人一个圈子就好了。

感性理解的话就是要尽可能的让长的段之间有重复,重复就可以节省椅子,而始终都找最长的left和right就能保证这一要求。

wa点:multiset中如果两个元素它们定义<运算符的那个信息相同他就认为是相同的,而erase的时候会把所有相同的都erase掉,所以为了区别不同的人加上了一个id。。。很神奇吧。。

继续阅读“[比赛][贪心][STL] codeforces1060D Social Circles”

[构造][树][贪心] codeforces 1041E Tree Reconstruction

http://codeforces.com/contest/1041/problem/E

比赛完5min想到了ac做法emmmm

并没有看懂官方题解,NO的判别其实很简单,只要有b不是n的情况就NO,因为不管怎么分都一定会有一个n。YES的情况怎么构造?我自己的做法是把n作为根节点,把条件排序后从小到大考虑:如果一个点出现了一次,那么就连一条从根节点到这个点的边,并且把这个点标记为用过的;如果出现了多次,那么就到前面找没有标记过的点找一个最小的插到当前点和他的父节点之间,并且把找到的点也标记为用过的。

所以为什么是正确的?首先按照a排序后可以发现如果一个数字重复出现了那么一定是从第ai个往前重复,如1 3 3 4,这个重复的3一定是从第3个往前延申,按照我的构造方法,如果不是这样那就不可能满足要求,因为3和5之间的路上的节点一定是全是小于3的数字,而且以3为根的子树我这里直接让他为空。这样的话总可以在前面找到足够数量的数字来插入到3的这一条链上(忽然感觉说不清楚了但是这么构造一定是对的emmmmm
wa的话感觉可能是当时很饿然后树上的插入操作和标记都写错n次,神奇的是每次都能通过前30个test然后被3x刷掉。。

继续阅读“[构造][树][贪心] codeforces 1041E Tree Reconstruction”

[分治][mergesort][经典算法推广][实现] Codeforces Round #510 div2 D Petya and Array

http://codeforces.com/contest/1042/problem/D

嗯,大概是发现了自己以前一直没有正确理解mergesort。。。。

vp时候发现一开始这个题目过的人竟然比C多然后就提前去看了,但是竟然并没想出来正解emmmmmm,想过分治但是不知道怎么在线性合并左右段,看了前排dalao代码恍然大悟,其实就是逆序数的推广,这里把前缀和当成要处理的对象即可,如果是逆序数的话就是输出来一个数字右边有多少个比他大的,这里的话是sum[i]的右边有多少个比sum[i]+t小的,而t是常数所以其实几乎和逆序数一样。。如果仔细考虑逆序数的分治算法的话,会发现他能保证合并的时候线性是因为每次左右两边都是排好序的,这样的话就可以线性合并,而为什么排序这个操作不会影响到结果呢?因为在合并的时候左右两边各自的结果已经被计算过了,需要计算的仅仅是跨越中点的那些lr对!而这些计算和左右两边各自的顺序没有关系,只要保证左边的在左边右边的在右边就行了:因为我们是计算合法的数量,只要存在就+1,跟他什么时候存在早存在晚存在没关系。 继续阅读“[分治][mergesort][经典算法推广][实现] Codeforces Round #510 div2 D Petya and Array”

[暴力][分块][思维] CF 1030E Vasya and Good Sequences

题意如果一个序列中[l,r]里面的数,可以通过调整每个数的二进制位使得其异或和为0,那么这个[l,r]对就是good的,然后求有多少个这种[l,r]对,序列长度3e5。

一开始想dp,又是分位又是奇偶的,始终没搞出来。看了官方题解才发现判定一个[l,r]段是否为goog的充分必要条件只有两个,首先设bi为ai的二进制表示中的1的个数,则充要条件为:

① Σbi(l<=i<=r) 为偶数

② max(bi)<=Σbi(i!=index(max(bi)) 继续阅读“[暴力][分块][思维] CF 1030E Vasya and Good Sequences”