[DP][后效性处理] codeforces 1247 E Rock Is Push

题目链接

题意:

给定一个 $n*m$ 的棋盘,每次你只能向右走或者向下走,要求从左上角 $(1,1)$ 走到右下角 $(n,m)$ ,问有多少种走法。
有一个限制因素是棋盘的格子里可能有石头,然后走到一个地方就会把这里的石头按照来的方向推出去,如果有多个石头就会连带着一起推过去。
数据范围 $1\le n,m\le 2000$ ,答案对 $10^9+7$ 取模。

题解:

直接DP会有后效性的问题,我们可以给状态加上约束:令 $D_{i,j} R_{i,j}$ 分别表示一个点改变原方向后向下走/向右走有多少种走法。
这样的话dp转移可以写成类似于 $D_{i,j}=\sum_{i=1}^{n-k-i}R_{i+t,j}$ 的形式,然后这样可以得到一个复杂度 $\mathcal{O}(n^3)$ 的算法,
观察这个式子发现他是线性的,当一个维度发生变化是等式右边只有一到两项会发生变化,就把复杂度降到了 $\mathcal{O}(n^2)$ ,就可以通过本题了。
继续阅读“[DP][后效性处理] codeforces 1247 E Rock Is Push”

[DP][CDQ分治][树状数组] bzoj2244 SDOI2011 拦截导弹

题目链接

题意:

给定一个序列,每个元素有两个属性 $h$ 和 $v$ ,是导弹的高度和速度,发射的拦截炮弹第一发可以是任意的高度和速度,但是要求每一发炮弹的高度和速度都不能大于前一发。问:
1. 选取最优的发射方案的时候最多能拦截多少发导弹
2. 当有多个拦截导弹数目相同的最优方案的时候,我方会从中随机选取一种方案,现在问在这种策略下,每发炮弹能拦截到导弹的概率是多少

题解:

第一问很明显使用cdq分治加速dp转移算LIS,难点在于第二问。把LIS各个节点的转移看成图上的连边的话,可以得到一个dag,而后可以想见使用dp求出到每个点的在LIS上的路径有多少条,便可以确定随机选取的情况下每个节点被选取到的概率为 经过该点的在LIS上的路径数/所有的在LIS上的路径数 。判断一个点是否在LIS上,我们可以两端各求一次LIS,分别记为 $dpl[i] dpr[i]$ ,则如果当前节点满足 $dpl[i]+dpr[i]=\max\limits_{1\le j\le n} dpl[j]+1$ 则说明其属于某个LIS,+1是为了去除节点本身的重复计算。 为了求出经过某个点的路径数,我们可以用之前 dp求最短路必经边的方法 ,从两端分别跑一次dp,分别记录两端到某个节点的属于LIS的路径数为 $gl[i]\;gr[i]$ ,这样的话经过节点i的路径数就可以表示为 $gl[i]*gr[i]$ ,则每个点被选中的概率就可以被表示为

$$\frac{gl[i]*gr[i}{\sum_{[dpl[k]=LIS]}gl[k]}$$

这就是第二问的答案了。因为分治中每次需要对 $[l,r]$ 之间的元素暴力排序,所以复杂度会多一个 $log$ ,也就是 $\mathcal{O}(n\log{}n)$
继续阅读“[DP][CDQ分治][树状数组] bzoj2244 SDOI2011 拦截导弹”

[SAM][dp][拓扑排序][模板] 洛谷 P3975 TJOI2015 弦论

题目链接

题意:

给定一个长度为 n 的字符串,让求出它的第 $k$ 小子串是什么。每次除字符串之外还会给定两个参数 $t $和 $k$ ,$t$ 为 $0$ 则表示不同位置的相同子串算作一个, $t$ 为 $1$ 则表示不同位置的相同子串算作多个。数据范围 $n\le 5*10^5$ $t\in {0,1}$ , $k \le 10^9$.

题解:

后缀自动机板子题。我们知道每一个子串放在sam上跑一定可以走到一个合法节点,反过来说任意一个节点一定代表了一批能走到这儿的子串。那么我们可以想办法把到达每个节点有多少种子串用dag图上dp的方式求出来,然后在t=1的时候,根据sam的性质,给每个dp值再乘以一个 $|endpos|$ 就可以了。学习到的是比我原来板子更快的拓扑排序方式。。。直接用len结果在数组里排序,比起用queue来常数小了很多。另外还纠正了自己的对于sam拓扑序的一个错误认识,他其实无论是slink还是dwag的拓扑序都是一样的,因为无论哪种都一定是从小的子串往大的走。
继续阅读“[SAM][dp][拓扑排序][模板] 洛谷 P3975 TJOI2015 弦论”

[单调性优化DP][二分][比赛补题][×][思维] codeforces gym 101412 I Beautiful Spacing

题目链接

题意:

要求给一片文章排版,要求每行 $W$ 个格子,每一行的要求是首单词必须顶格,除了最后一行之外的尾单词也必须顶格,然后单词之间至少有 $1$ 个空格,单词内部不能有空格,也不能改变单词之间的顺序。现在问在排版方案满足这些要求的条件下,单词之间的最大空格最小是多少。数据量: 每一行的格子数: $3\le W \le 80,000$, 总共的单词数:$2\le N\le 50,000$ 每个单词的长度 $x_i$ 满足 $1\le x_i \le \frac{W-1}{2}$
继续阅读“[单调性优化DP][二分][比赛补题][×][思维] codeforces gym 101412 I Beautiful Spacing”

[比赛补题][线段树+][动态维护矩阵乘法][动态dp][区间lr问题] codeforces 750E New Year and Old Subsequence

题目链接

题意:

类似上一题,给定一个长度2e5的字符串,2e5个询问,每次问从区间 [l,r] 里面最少删去多少而可以使得结果中存在2017但是不存在2016。这个是比较好的一道题,之前我从没来遇到过动态维护动态规划的。。。这叫什么,动态动态规划?(雾)

题解:

首先考虑简单版的问题,如果不考虑查询,单次做问整个序列最少去掉多少该怎么做?我当时是考虑了很多,但是如果按照正常的考虑方式的话就会越想越复杂,不知道该维护什么样的一个状态。该以什么作为状态呢?如果按照状压的思路会发现无法转移,因为他这个2016和2017都是有顺序的啊,不能状压搞,但是也不能把前面的所有情况搞出来,复杂度会爆炸。看了题解发现有人提正则表达式和有限状态机才明白了。。。之前做的那个题简单是因为他很好转移,是不包含当前前缀时最少需要删除多少,而这个题目的状态需要定义为包含当前状态机节点对应的前缀且不包含严格包含当前状态机节点对应的前缀最少需要删除多少个字符。。。意思就是20的时候不能有201和2017的时候的需要删除的最少字符。。

然后考虑状态的转移,这个有限状态机可以匹配出来2017,但是匹配出来之后呢?我们应该拒绝掉所有的2016,注意这时候,从状态2017和201都可以转移到2016,所以我们当前如果已经匹配完且达到2017/201的时候,转移回到本身都需要多删掉一个字符,也就是本身。。。其他情况是如果要往下一个节点走的时候,回到自身的代价是1,往下走的代价是0.。。其实也就是一个选择,选择当前的这个字符留还是不留,,,,跟谁匹配的话比较好。。

然后他很妙的一点就是这个转移可以写成矩阵的形式,当然这不是一个矩阵乘法,是一个很怪的操作,类似Floyd最短路的方法,然后这个矩阵操作是满足结合律的(我也不知道为什么满足结合律)。。。。就可以用线段树维护了。。。

甚至说这个题甚至可以改成带修的。。

继续阅读“[比赛补题][线段树+][动态维护矩阵乘法][动态dp][区间lr问题] codeforces 750E New Year and Old Subsequence”

[DP][子序列][有限状态机][正则表达式] codeforces 1096D Easy Problem

题目链接

题意:

给一个长为1e5的串,问至少去掉多少个字符后该串中不包含hard这个子序列。

题解:

连续两场有类似的这样的题目搞砸了,心情复杂。

这个是比较简单的版本,当时真的怎么就没想到用有限状态机来表示呢。。。还是naive,太菜了。。。

用 dp[i][j] 表示到第 i 个位置为止,使得前缀为j长度的hard的子串不出现至少需要删除多少个字符。状态转移很简单,当为char==h&&j==0的时候dp[i][j]=dp[i-1][j]+1;
其他的就是枚举最后一步决策,按照删当前的还是不删当前的来分就行了。

这题搞砸真的非常难过,非常难过

继续阅读“[DP][子序列][有限状态机][正则表达式] codeforces 1096D Easy Problem”

火柴棒DP 【未完待续】

这种题主要是比较套路,在火柴棒的约束下搞事情

#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
 
using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
 
typedef long long LL;
 
int n, m;
LL dp[505][2][2][2]; //left, carry, place B, place C
int need[] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6};
 
void add(LL& x, LL y) {
    x += y;
    if(x >= m) x -= m;
}
 
LL dfs(int n, bool carry, bool B, bool C) {
    LL& ret = dp[n][carry][B][C];
    if(~ret) return ret;
    if(n == 0) {
        if(!carry && !B && !C) return ret = 1;
        return ret = 0;
    }
 
    ret = 0;
    if(B && C) {
        for(int i = 0; i < 10; ++i) {
            for(int j = 0; j < 10; ++j) {
                int sum = need[i] + need[j] + need[(i + j + carry) % 10];
                if(sum > n) continue;
                bool nxt = i + j + carry >= 10;  //check next carry
                //always can continue to place B & C
                add(ret, dfs(n - sum, nxt, 1, 1));
                if(i) add(ret, dfs(n - sum, nxt, 0, 1)); //choose not to place B
                if(j) add(ret, dfs(n - sum, nxt, 1, 0)); //choose not to place C
                if(i && j) add(ret, dfs(n - sum, nxt, 0, 0)); //choose neither place
            }
        }
    } else if(B) {
        for(int i = 0; i < 10; ++i) {
            int sum = need[i] + need[(i + carry) % 10];
            if(sum > n) continue;
            bool nxt = i + carry >= 10;
            add(ret, dfs(n - sum, nxt, 1, 0));
            if(i) add(ret, dfs(n - sum, nxt, 0, 0));
        }
    } else if(C) {
        for(int j = 0; j < 10; ++j) {
            int sum = need[j] + need[(j + carry) % 10];
            if(sum > n) continue;
            bool nxt = j + carry >= 10;
            add(ret, dfs(n - sum, nxt, 0, 1));
            if(j) add(ret, dfs(n - sum, nxt, 0, 0));
        }
    } else {
        if(carry && n == need[1]) ret = 1;
    }
    return ret;
}
 
int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    int t; scanf("%d", &t);
    int kase = 0;
    while(t--) {
        scanf("%d%d", &n, &m);
        n -= 3; //subtract - & = signs' cost
        memset(dp, -1, sizeof dp);
        printf("Case #%d: %I64d\n", ++kase, dfs(n, 0, 1, 1));
    }
    return 0;
}

[数位DP][二进制性质][异或][贪心] 百度之星初赛Round 2 1003 度度熊与运算式1


题意:给一堆1,中间由运算符 $op$ 隔开,$op$ 可能是按位异或 $\oplus$ 或者$?$, 问现在把 $?$ 换成 $\oplus$ 或者 $+$ ,能让整个运算式取最大的方案结果是多少?

题解:首先注意到一点是位运算优先级比异或运算高,这样的话显然我们可以把原来的不能更换的 $\oplus$ 当作分隔,把原式分割成一些段,现在的问题就是怎么处理这些段里的符号使得最后结果最大。
继续阅读“[数位DP][二进制性质][异或][贪心] 百度之星初赛Round 2 1003 度度熊与运算式1”

[数位DP][模板][二进制性质] SDOI2016 储能表

题目链接

题意:给定n, m, k, p, 求出
\[
\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max(i\oplus j-k)\\
最大数据范围
T = 5000, n \leq 10 ^ {18} , m \leq 10 ^ {18} , k \leq 10 ^ {18} , p \leq 10 ^ 9
\]

题解:转化成求\[\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} i\oplus j*\epsilon(i\oplus j-k) – k*\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} 1*\epsilon(i\oplus j-k)\],其中\[\epsilon(x)当x> 0时为1,否则为0\]. 这样的话可以直接数位dp计算了,有两个范围和一个约束,要计算的量也有两个,刚学到的kuangbin的板子十分的好用!!!这个甩锅给-1位的写法真的太简洁了。

error:第一个是搞错了当前位的贡献,只乘上了二进制位的权值,没有乘后面的种类数。第二个是爆int,日常long long错误
继续阅读“[数位DP][模板][二进制性质] SDOI2016 储能表”

[补题][数位dp][位运算] 2019牛客第七场 H Pair

题目链接

题意:给定ABC三个数,大小1e9,要求求出来1<=x<=A,1<=y<=B范围内满足(x&y)>C或(x^y)<C的(x,y)对数。

由于题目给的是或条件,所以还要考虑一个容斥的问题,先算出来单独满足两个条件的数目,再减去同时满足两个条件的数目,即可得到答案。先考虑单独计算两个条件的情况:

一般来说这种数位dp的框架都是类似的,在第i位时考虑前面的约束有没有“顶满”,如果顶满的话考虑当前这一位的限制,否则继续递归下去。这样的框架使得最后的递归边界处理变成了最有思维含量的一部分。这个题不同寻常的地方在于它是强制要求你同时考虑多个边界的,这是值得注意的一点。在这个题目里比较友好的一点是他对于与C的关系比对的时候是不等号,没有等号,这样的话,我们只要在dp计数的过程中一直保持可行性就可以了,到最后一步(pos=-1)只需要判断

1)前面是不是顶到C的头了,如果是的话就不行
2)前面是不是顶到了全0,因为题目要求x,y至少为1
继续阅读“[补题][数位dp][位运算] 2019牛客第七场 H Pair”